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Closed-Form Expression of Numerical
Reflection Coefficient at PML Interfaces
and Optimization of PML Performance

Jiayuan Fang, Member, IEEE, and Zhonghua Wu, Student Member, IEEE

Abstract— This letter presents a derivation of the closed-
form expression of numerical reflection at interfaces of per-
fectly matched layer (PML). Reflection coefficients at single
interfaces and of finite-thickness absorbers are presented. The
derived closed-form expression is found to match identically
with the reflection coefficient obtained directly through finite-
difference time-domain computation. The closed-form expression
of numerical reflection coefficient can significantly facilitate the
optimization of PML performance.

1. INTRODUCTION

HE PERFECTLY matched layer (PML) has been proven

to be very effective for the termination of computation
domains in finite-difference time-domain (FDTD) computation
[1]. Theoretically, there should be no reflection at interfaces of
PML media for incident waves of any angle and frequency so
that PML absorbers can be infinitely thin. Reflection does exist
in actual numerical computations, however, and the amplitude
of the reflection is proportional to the contrast of material
parameters on two sides of an interface. Therefore, PML of 8
to 16 cells in thickness and of continuous conductivity profiles
are often used to contain the numerical reflection [1], [2].

Many researchers have studied different conductivity pro-
files in PML in order to minimize the numerical reflection
[1]-[3]. These studies were mainly based on numerical exper-
iments by performing many times of numerical computations.
It is apparent that the optimization of PML can be done much
more efficiently if a closed-form expression of the numerical
reflection of PML is available.

The analytical study of numerical reflection at PML inter-
faces was first done by Chew and Jin with the complex-space
stretched coordinate notations [4]. This letter presents an
alternative way of deriving the numerical reflection coefficient
at an interface of PML media. Reflection coefficients at the
interfaces of tangential electric components and of tangential
magnetic components are both presented. Numerical reflection
coefficients from the analytically derived expression are found
to be identical with those obtained directly from numerical
computations. The closed-from expression that describes the
dependence of the numerical reflection on various parameters
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of PML media enables efficient determination of optimum
values of PML parameters.

II. DERIVATION OF THE CLOSED-FORM
NUMERICAL REFLECTION COEFFICIENTS

A. Numerical Dispersion Relation in PML

For the convenience of illustration, the derivation is demon-
strated for the two-dimensional (2-D) fields of F, E,, and
H, components. The extension of the conclusion to three-
dimensional (3-D) fields is straightforward. Suppose a PML
material is of parameters (e, p,0,07%). Assume At and Ah
are the FDTD time and space steps and 7,4, and j are indices
for the time step and for the space in the z and y directions.
Substitute a plane wave solution into the finite-difference equa-
tions, and settingthe determinant of the resultant homogeneous
equations to zero, then the dispersion relation in the PML
medium can be optained as
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B. Numerical Reflection at Single Interface

Consider a uniform PML (¢, p, 01,07,), medium 1, in
the region £ < 0 and another uniform PML (¢, p, 02,03,,),
medium 2, in the region z > 0. Assume the interface at . = 0
coincides with the electric nodes of F,. An incident plane
wave incidents upon the interface from medium 1. The fields
in both media can be expressed as follows:
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where K. is the reflection coefficient to be found at the
interface. In (4), it is implied that E, is continuous at the
interface. The impedances Z; and Z, are defined as F,/H,
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for a plane wave propagating in +x direction. It can be proved
that the impedances on both sides of the interface are the same.
Therefore, we denote 7, = Z> = Z. Z can be found as
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The reflection coefficient R, can be found by substituting
(2) to (4) into the finite-difference equation for E, at the
interface as (6), shown at the bottom of the page, where o, is
the conductivity to be chosen at the interface. If a plane wave
incidents upon the interface from medium 2, with the same
procedure as above, the reflection coefficient R can be found
as (7), also shown at the bottom of the page.

It can be seen from (6) and (7) that, in general, R, # —R..
The reflection coefficients R, and R] are functions of o, at the
interface. Typically, o, has been chosen to be the average of
01, and oa;. Then, the expressions of R, and R. are reduced
to
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It can be shown [5] that letting o, = (01, + 02,)/2 is not
the best choice. By properly choosing material parameters in
the finite-difference equation at the interface, the reflection
coefficient at the interface can be substantially smaller than
that in (8).

Next, consider the interface coincides with the magnetic
nodes of H,. With the same technique as above and assuming
H, is continuous at the interface, the reflection coefficient R,
of the electric field for the incident wave from medium 1 and
R} for the incident wave from medium 2 can be found as (9)
and (10), shown at the bottom of the page. Again, it can be
seen that, in general, R, # — R}, except under the condition
or = (07, +05,)/2. In the following derivation, it is assumed
that o, = (01, + 02,)/2 and o} = (0, + 03,)/2.

C. Numerical Reflection of a Finite-Thickness PML Absorber

Suppose a PML absorber is terminated by a perfect electric
wall that has reflection coefficient of —1. The total reflection
Ry 5an at the H, node, half Ak away from the electric wall,
can be found as

Rosan = (R(})L,Mh _ e—]kxAh)/(l ~RY 5Ahe—gk¢Ah) (11)

where RY-54" s the reflection coefficient for the single in-
terface at the H, node and k. is the wavenumber in the
half-Ah-thick medium next to the electric wall. The total
reflection R, at the £ node, one Ah away from the electric
wall, can be found as

Ran=(R&" + Rosane™2") /(1 + R" Ry sane™ %= 2)

12)
where R2" s the reflection coefficient for the single interface
at the E, node, k, is the wavenumber in the half-Ah-thick
medium between the E, and the H, node. The total reflection
coefficients at Fy, and H, nodes further away from the electric
wall can be found recursively. For a PML absorber of NAh
in thickness, the total reflection coefficient at the interface of
the PML absorber can be expressed as

Ryan = (RY®" + Riv_o.5ane 75 =2")

/(14 RYA RN _g5yane™ 7 2). (13)
III. NUMERICAL VERIFICATION AND OPTIMIZATION
In the following numerical tests, Az = Ay = Ah =1

mm and At = 0.5Ah,/ue. The reflection coefficient versus
frequency is calculated as the ratio of the Fourier-transformed
incident and reflected waves. Fig. 1 shows, at the normal
incident angle, the reflection coefficient versus frequency at
a single interface of the free space and a uniform PML
of 0, = 1 S/m. Also shown in Fig. 1 is the reflection
coefficient for a four-cell PML of parabolic conductivity
profile with the theoretical reflection coefficient Ry, to be
10~7. Here, Ry, is the reflection coefficient of a PML absorber
by ignoring numerical reflection at medium interfaces and
numerical dispersion in PML medium [1]. In computing the
closed-form numerical reflection coefficient for spatial varying
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Fig. 1. Comparison of numerical reflection coefficients from the closed-form
expression and the direct FDTD computation. )
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Fig. 2. Comparison of numerical reflection coefficients of a four-cell PML
from the closed-form expression and the direct FDTD computation.

conductivity profile, o1, (or o2,) is the average conductivity in
the half-cell to the left (or right) of the interface. Fig. 2 shows
the reflection coefficient of a four-cell PML used to terminate a
two-parallel-plate waveguide. The separation between the two
metal plates is 40 mm. The theoretical reflection coefficient
Ry}, of the PML absorber, which has a parabolic conductivity
profile, is 104, The incident wave of TM; mode fields has a
cutoff frequency at 3.75 GHz. It can be seen from Figs. 1 and
2 that there is virtually no difference between the reflection
coefficients obtained from the closed-form expression and
those from the FDTD computation.

The closed-form expression of the numerical reflection
coefficient of a PML absorber is a function of space steps Az
and Ay, time step At, frequency w, incident angle 6, thickness
of the absorber §, and the conductivity profile. Assume the
conductivity profile is expressed as o, = g, (z/6)", where z
is the distance to the interface of the PML and the interior
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Fig. 3. Contour plot of the numerical reflection coefficient versus the ex-
ponent n of the conductivity profile and the theoretical reflection coefficient
Ry for an eight-cell PML.

medium. If R, at the normal incident angle is specified,
the value of ¢, can be found as —(n+1)/(26n)InRy,.
Depending on different objectives, the PML absorber can be
optimized in different ways. Assume we want to find the value
of n and Ry, for minimum reflection at the normal incidence
and at the frequency A = 100Ah, Fig. 3 is the contour plot
of the numerical reflection coefficient versus n and Ry, for an
eight-cell PML. Without the closed-form expression, a large
number of FDTD computations have to be performed to get
the contour plot shown in Fig. 3. From Fig. 3, one can identify
that the optimum value of n is about 3.1 and the optimum
value of Ry, is about 1078.

IV. CONCLUSION

Closed-form expressions of numerical reflection coefficients
at PML interfaces have been derived in this letter. They
have also been verified through direct FDTD computations.
With the closed-form expression, optimum parameters of PML
absorbers can be determined efficiently.
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